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So far in this text, all we have covered is characteristics of a single distribution of data. In other words, we have 
looked at only a single variable and how that variable appears when graphed with a histogram. We looked at 

many kinds of distributions that can come from a variable, and we have found sophisticated ways to describe the 
shapes of those distributions (e.g., kurtosis and skew). 

We have also learned some characteristics of those distributions. The measures of central tendency give us a way 
of describing the value that best represents all of the data in the set. How different these measures are from each 
other informs us how skewed the distribution is. Furthermore, the standard deviation is a tool that describes how 
wide the distribution is around the mean. Using both of these tools, we can then calculate the meaningfulness of 
a single score within the dataset (by using z scores and percentiles). All of these tools are helpful to understand the 
characteristics of a single dataset. 

Because these things merely describe the dataset, these tools are called descriptive statistics. The mean, median, 
mode, range, and standard deviation are all ways to describe the patterns of a single variable’s appearance. Descriptive 
statistics are useful on their own, but they are also vital building blocks for most of the rest of what statistical 
methods can do. In this chapter, we will now step into new territory and use these tools to learn new things. 

The rest of the text will focus on methods of inferential statistics. Whereas descriptive statistics are methods 
that let us describe a single dataset, inferential statistics are tools that allow us to make inferences about whether 
and how two variables (or more) are related to each other, if at all. For example, although it is neat to be able to 
say with descriptive statistics, “The average tastiness rating of my cheeseburgers was 7 out of 10,” it may be much 
more useful information to say with inferential statistics, “My cheeseburgers are rated as tastier among high school 
students than college students.” 

In this simple example about the cheeseburgers, there are two variables: (a) the tastiness of the cheeseburgers, and 
(b) the class of the students who ate the cheeseburgers. Knowing only the characteristics of one variable (tastiness) 
is some good information, but if we can see how its variation is influenced by another variable (students’ class), 
then maybe we can change one of them to influence the other. For example, knowing how these two variables are 
related, this restaurateur may wish to focus their advertising on high school students. 

This is the potential of inferential statistics—uncovering clues about how one variable may influence another. If the 
researcher uses sound research methods with careful observations, and then uses the correct inferential statistical 
tests, the researcher may uncover evidence that one variable affects another. That knowledge is power, whether it 
is used to increase burger sales, or to find out what causes or cures depression. 
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7.1	 Correlation Overview
The first inferential statistics method we will cover is called “correlation.” Correlation is a 
useful tool in our statistical arsenal, but it is also often misunderstood or even abused. We 
will work carefully to understand the strengths and limitations of correlation so that we 
may use it properly. 

The correlation test seeks to answer what one continuous variable does on average 
(increase or decrease) when another continuous variable increases or decreases. For example, 
a researcher may wish to know what happens to a person’s blood pressure depending on how 
much fat they consume. This researcher wants to know whether the person’s blood pressure 
rises or falls as their fat intake rises or falls. There are two continuous variables, and the 
researcher is interested in how one of them behaves in relation to the other. 

The typical correlation is sometimes referred to as a “Pearson correlation,” named after 
the statistician who developed it, Karl Pearson (who adapted it from Francis Galton). 

The traditional correlation requires the following:

	◼ Two continuous variables with at least interval properties*

	◼ Each unit of measurement has a value for both variables

What the first point means is that it does not make sense to correlate a categorical 
variable with something that is continuous. Hopefully that is intuitive, because a categori-
cal variable’s “increase” does not make sense. Categorical variables can take on different 
values, but those values indicate only difference, and not order or equal intervals between 
values, so it makes little sense to try to understand how one continuous variable changes 
as a categorical variable’s value changes categories. For full disclosure, there are some very 
sophisticated ways to examine this possibility with advanced statistical methods (check out 
something called “dummy coding”), but it is beyond the scope of this course, and beyond 
the utility of basic correlation. 

The second point means that for each unit of measurement one has (like for each person), 
that unit needs to provide a value for both variables that interest the researcher. 

For example, imagine Irving wants to know if there is a relationship between his hours 
of sleep from the night before and how much coffee he drinks the following day. Irving needs 
two observations that are paired together by the day to which they refer. In other words, N is 
not referring to people, because Irving is the only person in this study. N in this case refers 
to the number of days that he is collecting these observations. His coffee intake one morn-
ing would need to be paired with the hours of sleep from the preceding night; otherwise, 
he cannot actually assess whether they are related. He needs his data organized in such a 
way that the two variables go together. Another way of thinking about this is to say that it 
matters which row in which Irving puts the data. Each row of his data collection should be 
from one of the days upon which he recorded the datapoints. He cannot just take all of the 
values from one variable and toss them in randomly next to any of the values of the other 
variable, because then the correlation will not make any sense:

*	 There are some special versions of correlational tests that do not require both variables to be continuous. For 
example, a point-biserial correlation uses one continuous variable and the other variable is dichotomous 
(i.e., can take on only two values). There are some other special tests, but for the traditional correlation in this 
textbook, both variables must be continuous.
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  Table 7-1  �Irving’s Observations of One Variable Need to Pair With 
Observations of the Other Variable (in This Case, They Pair by 
the Day They Were Presumed to be Related)

Day Hours of Sleep Previous Night Coffee Intake in Morning (ml)

1 8.1 92

2 8.7 106

3 7.5 88

4 8.4 71

5 7.0 99

6 6.2 112

7 7.8 98

8 8.2 85

That is, in this case, the correlation test wants to look at the value of one of the vari-
ables (e.g., hours of sleep) on one day, see what the value is of the other variable (e.g., coffee 
intake) on that same day, and then it does that for each of the days for which there is infor-
mation available. Finally, it explains whether and how closely the two values changed in a 
patterned manner. 

It may be illustrative to see how such data are graphed, and then what that has to do with 
the correlation result itself. Data in a correlation test are best illustrated using something 
called a scatterplot. A scatterplot graphs two continuous variables. One of those variables is 
plotted on the x axis, and the other is plotted on the y axis. It uses dots (or something similar) 
to show where a single unit lies in relation to the rest of the units that were measured. To 
apply that to Irving, the scatterplot puts one of the variables—let us say hours of sleep the 
previous night—on the y axis, and then the other variable—let us say caffeine intake—on 
the x axis. It actually makes no difference which variable goes on which axis in this case, so 
it could easily go the other way around if we prefer. In this scatterplot, we see 8 dots because 
the number of times we had paired observations (N) of our two variables was 8. In this case, 
each of these data pairs refers to observations from a specific day that Irving recorded, but 
other data sets could have paired observations of a person, hamsters, bank accounts, and 
so on, depending on what sort of unit the research concerned. Each dot in this scatterplot 
represents a day that Irving observed, and each dot’s location on our scatterplot. Each dot’s 
location on our scatterplot is determined by its measurement of either variable, so that it 
looks like this:
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Figure 7-1  A Scatterplot of the Data in Table 7–1

Take a moment now and find which dot represents Day 7, for example. On that day, 
Irving got 7.8 hours of sleep, so find which dot seems to line up with that value along the 
y axis. Also see that the dot lines up with the value of his coffee consumed for that same 
paired observation, which was 98 ml. 

Just a quick note here before we move on—on this scatterplot each value of one variable 
must be paired with another value of a variable, or it will not actually go anywhere on the 
scatterplot. Say Irving got 6.9 hours of sleep one night, but then forgot to measure how much 
coffee he drank the next morning. In that case, he cannot use the observed value of 6.9 for 
that day, because he had no value for the paired variable. He would stare at the scatterplot 
wondering where to put the dot, because he would know where it should be on the y axis, 
but with no paired value along the x axis, he would have no idea where it should properly go. 
However, if Irving had drunk no coffee that morning, then that would be a value, because 0 
is a value: it is information, whereas forgetting to record is no information. 

If we zoom in where most of the dots are, we can see that there seems to be a little bit 
of a pattern to them:

Figure 7-2  �Scatterplot of the Data in Table 7–1, but Zoomed In
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We can see that there is possibly a gradual slope to the dots, sort of from the upper left 
side to the lower right side. If we were to draw a line to show this slope, it would look like this:

Figure 7-3  There is, on Average, a Gradual Slope to These Datapoints

That slope of the line is important. We will cover even more of it in the next chapter 
on regression, but for now, let us just focus on the main point of that line. We can call it a 
“trendline” for now. Because it is slanted, that means that there is some pattern present in 
these two variables. 

Specifically, a correlation is summarized with two pieces of information: 

1.	 The direction of the relationship

2.	 The strength of the relationship

7.2	 Direction
We can see the first characteristic in the scatterplot. Because the line is sloped from the 
upper left side of the graph to the lower right side of the graph, that means that as the hours 
of Irving’s sleep increased, the amount of coffee he consumed the next morning decreased 
on average. 

When the two variables go in opposite directions, they are “negatively correlated.” 
That is, as one variable rises, the other one falls. It does not matter which one trends up 
and which one trends down: as long as they are not doing the same thing together, it is a 
negative correlation. 

When the two variables go in the same direction, they are “positively correlated.” That 
means that both variables rise and fall together, on average. For example, as a person moves 
more quickly, their heart rate increases, on average. As one increases, the other tends to also 
increase, and as one decreases, the other also tends to decrease. A positive correlation in a 
scatterplot has the opposite slope of the negative correlation. The “trendline” will slope from 
the lower left to the upper right of the scatterplot.
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Figure 7-4  �A Positive Correlation Trends From the 
Lower Left to the Upper Right Corners

When the trendline is horizontal, or very close to horizontal, that means that there is 
“no correlation,” or at least no discernible correlation, between the two variables. 

Figure 7-5  When the Pattern is Relatively Flat, There is No Correlation

In this chapter, we will compute a number that represents the correlation between two 
variables. It is called the correlation coefficient, and it is represented with r (it is sometimes 
called Pearson’s r). When two variables are negatively correlated, r is a negative number (that 
is not very close to zero). When the two variables are positively correlated, r is a positive 
number (that is not very close to zero). 

7.3	 Strength
When we refer to the “strength” of the relationship between two variables, we basically 
mean how closely these two variables appear to move together. If they nearly always move 
predictably in relation to each other (positive or negative), then that would be a very strong 
relationship. However, if they do not tend to move together in a predictable way, then it is a 
weaker relationship. In other words, if I can be pretty sure how Irving’s coffee intake will be 
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affected by his sleep the previous night, then there is a strong correlation between his sleep 
and coffee intake the next morning. But if it is more like a guess at how his coffee intake 
will change due to his sleep, then it is a weak correlation. 

When we compute the r for a correlation, the size of the number will tell us the strength 
of the relationship. An r that is close to zero (whether it is positive or negative) is weaker, 
and an r that is farther away from zero and gets closer to !1 is stronger. In fact, this is an 
important thing to note, so I will put it in some fancy, eye-catching text:

Math Check
The r cannot be less than -1 or more than +1. If an r goes beyond those 
limits, there must be a miscalculation.

That is, if we find r = 1.28, we miscalculated. If Danny finds that r = -7.64, Danny miscalcu-
lated. I can hear Danny saying, “But what if it’s, like, a really crazy correlation?” The answer 
is still no. It is mathematically impossible for r to ever go beyond the limits of -1 to +1.

We will revisit this rule as we practice the math that goes along with the correlation, 
but remember that it is a fast way to know whether the math got off track somewhere in 
the calculations. 

Assigning adjectives to the correlation values is a little tricky, because “strong” and 
“weak” are rather subjective terms. Because of this fact, I generally hesitate to give clear cutoff 
criteria for when to call a correlation “weak” or “strong,” but for the purpose of assisting in 
interpretation of what we find, we may use the criteria below. However, please keep in mind 
that these cutoffs are somewhat arbitrary. Having a “weak” correlation does not necessarily 
mean that it is uninteresting, useless, or negligible. 

  Table 7-2  Some Adjectives That May be Used to Describe Correlations

Strength of 
Relationship None “Weak” “Moderate” “Strong” “Perfect”

r = +/- 0.0 to .29 +/- .30 to .39 +/- .40 to .49 +/- .50 to .99 +/- 1.0

So, if a correlation (r) is close to zero, that means there is no discernible pattern to the 
rising and falling of one variable based on the other (the scatterplot of height by # states 
visited shows this sort of pattern). However, if the correlation is equal to 1 (one), then that 
means there is a “perfect” relationship. In other words, with a perfect correlation between 
one variable and another, we can know the value of one of the variables as long as we know 
the value of the other. They are perfectly correlated. 

In reality, we do not see perfectly correlated variables unless they are measuring the 
same thing. For example, consider how one’s age and the year of their birth are correlated. 
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Figure 7-6  �In a Perfect Correlation, Positive or 
Negative, All Points Fall on a Line

If someone tells me what year they were born, then I can tell them how old they are now 
(depending a little on the month). If I find a person who is older, the year they were born 
decreases predictably, so that there is a perfect negative relationship between one’s age and 
the year they were born. 

Of course, as noted above, these have a perfect relationship because they are actually just 
two ways of measuring the same thing. In fact, if we find a correlation between two variables 
that is getting to be very close to 1, then we may want to consider the possibility that the two 
variables are the same thing, or at least are not different enough to treat them as separate. 

This sort of thing could happen in psychology. Say a researcher carefully constructs a 
measure of confidence, and then asks 50 people to complete it. The researcher may think 
that it will be correlated with a scale of arrogance, because those phenomena are similar in 
many ways. So, the researcher may be pleased to see that the two scales are correlated at .70 
(a strong, positive relationship). However, if the researcher finds a correlation of .96 (a nearly 
perfect relationship), that looks like the researcher was not really measuring two different 
things and should spend some more time working on their scale to find what distinguishes 
confidence and arrogance. 

We will see how to calculate a correlation shortly, but before moving on it is important 
to note what we can and cannot conclude from a correlation. Correlation is frequently misun-
derstood and misused, and so we must be clear about its limitations. 

7.4	 Correlation Never Implies Causation
Students should memorize that phrase, tell all of their friends, make a cross-stitch that says 
that and put it above their bed so that it is the first thing they see in the morning and the 
last thing they see at night. 

That phrase means that just because two things seem related, it does not mean that 
one of them made the other one occur. There are several reasons that correlation does not 
imply causation, which we will now explore. 

Consider an example. Imagine that a researcher does a large study and concludes the 
following: 

“People who eat more organic food tend to live longer.”

In other words, the researcher found a positive correlation between organic food intake 
and longevity. Let us assume that it was even a good study of a large, randomly selected 
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sample, with careful observations. A tempting misinterpretation of this study is that eating 
organically grown (or raised) foods causes longer life. That is, organic foods must be more 
nutritious or in some other way better for the human body than non-organic foods, right? 
The answer is, “Perhaps, but there are other explanations for why this correlation exists 
that are not due to organic foods’ inherent properties causing longer life.” In fact, a positive 
correlation will appear if any of the following possibilities is true:

Possibility 1: Organic food really does cause longer life.  It could be that there really is 
something about the process of organic farming and ranching that reduces cancer-causing 
substances to appear in foods, or that the organic foods contain significantly more nutrients 
in appropriate amounts that would support human health, compared to the alternatives. 

Possibility 2: Living longer increases the opportunity to eat more organic foods.  It 
makes sense that as a person lives longer, they have more contact with organic foods, espe-
cially as organic foods find their way onto our grocery shelves more easily as they get cheaper 
to produce and demand for them rises. So maybe living longer is what causes a person to 
eat more organic food.

As we can see, one reason that correlation does not imply causation is because 
we cannot (usually) infer directionality, or which variable led to the change in 
the other.

I slipped in that “usually” because sometimes it is not possible for one of the variables 
to have had an influence on the other. For example, if I find that longevity is correlated 
with how long one’s funeral is, it would not really be possible for the funeral length to have 
had any effect on longevity, because chronologically it would present a problem (unless we 
acknowledge that time is an illusion; e.g., Rovelli, 2018).

Possibility 3: Buying organic food makes one feel better about oneself, which in turn 
makes them live longer. In this possibility, organic food by itself has no effect on longev-
ity whatsoever, but it does affect how one feels about themselves, and then maybe it is that 
feeling about themselves that causes them to live longer. 

Another reason that we cannot infer causation from correlation is because 
the correlation does not account for variables that come in between the two 
we measured. 

Possibility 4: Being more concerned about one’s health causes both longer life and an 
increase in organic food consumption. If a person chooses to eat organic food, they prob-
ably are also more concerned about their health and diet generally. It is unlikely that they 
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eat lots of foods that are high in saturated fats or loaded with sugar. So then maybe it is not 
the organic food per se that is leading to their living longer, but it is simply the fact that they 
are mindful of what they put in their bodies. In other words, maybe eating an apple is way 
healthier than a cookie, regardless of whether it was grown organically or conventionally. 

We cannot infer causation from correlation, because the correlation does not 
account for a third variable that could cause the change in both of the variables 
that we measured. 

And of course, there are many other possibilities besides only these four. The problem 
for researchers is that all they learn from a correlation is that one of these possibilities could 
be true, but the correlation does not shed light on which one is actually true. To figure that 
out, more sophisticated research designs and statistical tests are required. 

7.5	 The Equation
Now that we are all on board with how a correlation is used, it is time to learn how it is 
computed. We will now get to know the equation better to see what it does, and then we will 
practice the math associated with the correlation. 

Just like with the standard deviation formula, there is a correlation formula that does 
the long-hand work of computing the correlation coefficient (the raw-score equation), and 
there is also a simplified version that arrives at the same answer but takes fewer steps (the 
computational equation). Let us first get to know the long-form version.

That looks like a lot, right? It is going to be fine, though. Try not to get lost in the size 
of the equation. We will go through each piece so that we know what it does, and then will 
solve the equation using the simplified version of the formula. 

The first thing to notice about the correlation equation is that it is a fraction. There 
is a numerator and a denominator. In a practical sense, that means that the correlation 
coefficient is a simplified version of a ratio of whatever is in the numerator to whatever is 
in the denominator. That is, it is looking at how much of the numerator there is compared 
to how much of the denominator there is. In the correlation, if there is the same amount 
in the numerator as in the denominator, then it will be a perfect correlation, r = 1. As we 
have covered, it is not mathematically possible to find more in the numerator than in the 
denominator for a correlation, so r cannot be more than 1. 

Now, let us explore what is in the numerator and the denominator of the equation. The 
numerator of this equation is R(xi - x)(yi - y). In words, it tells us to subtract the mean of all 
of the scores of the x variable from each individual score of the x variable. We then do that 
same thing for the y variable scores, using the mean of the y variable scores. This step gives 
us two sets of deviation scores: one for the x scores and one for the y scores. Next, we would 
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pair each x deviation with its y deviation counterpart (the two observations that were paired) 
and multiply those deviation scores together for each unit for which we obtained paired 
observations. We add up the products we got from doing that step, and that is our numerator. 

Even I got lost a little on that explanation, so I will now make it more concrete. Say 
Germaine has 30 best friends. She asks each friend their height and their weight. Germaine 
now has two paired variables: height and weight. They are both continuous data, and each 
unit (person) gave her a score on each variable, so a correlation is one way to analyze these 
observations. She first calculates the average height, and then the average weight for this 
group of best friends. Then, she would calculate a deviation score of each friend’s height 
from their mean height, and also a deviation score of each friend’s weight from the mean 
weight. Now that she has a deviation score of height and weight for each friend, she then 
multiplies those deviation scores together for each friend, and then adds up all of those 
multiplied deviation scores from all of the friends. 

The numerator gives us what is called the covariance between the x and y variables. In 
other words, it is an index of how much both variables vary together. Let us dig into that a 
little deeper, using an example. Think about sleep and mood. Consider whether these two 
variables are related to each other in any way. On the one hand, sleep is affected by lots of 
things, like noise, temperature, the softness of one’s mattress, what one ate before they lay 
down, and so on. Similarly, mood is affected by lots of things, including attitude, the weather, 
how others treat us, how well our thyroid is working, and so on. In some ways, sleep is affected 
by mood, and mood is affected by sleep. When we sleep poorly, that often affects our mood 
in some way. Additionally, when we are in a bad mood, that often has some influence on 
how well we sleep. In this way, mood and sleep may have some relationship to each other. 
Mood is not entirely in control of our sleep quality (or duration, or whatever), and our sleep 
does not entirely affect our mood, because plenty of other variables will influence both of 
these things. Still, there is some degree of influence between them, and so that is essentially 
what we are calling the “covariance.” Here is a visualization:

Figure 7-7  �Both Sleep and Mood Vary for Many Reasons. Where 
They Vary Together is Called “Covariance”

The circle on the left represents all the variation in sleep quality. The circle on the right 
represents all of the variation in mood. The overlapping sections of the circles represent the 
covariation of sleep and mood, or how they vary together. This overlapping section is what 
is sought out by the numerator of the correlation equation.
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Now let us dissect the denominator of the equation: √[R(xi - x)2][R(yi - y)2]. This portion 
should look a little familiar, in that it asks us to create a deviation score for each value of the 
variable, square it, and then sum up those squares. We have done that before—that was a 
big step in the standard deviation equation. In fact, that is precisely what the denominator 
is in the correlation coefficient: the standard deviations of the two variables. The denomi-
nator is essentially just the combined standard deviations of the two variables for which 
we compute the correlation. The standard deviation, of course, is a way of measuring the 
(average) variability in a variable. 

What this all means is that the correlation coefficient is the ratio of the covariance of 
the two variables to the average variation of those two variables. That is, if we were to put 
the correlation coefficient into words, it would look like this:

So, the correlation coefficient gets bigger the more the two circles in our figure (like 
Figure 7–7) overlap. If they perfectly overlap, that means that the two variables always 
change together, and the total proportion of one circle overlapped by another circle is 100%, 
or r = 1. If they do not overlap at all, then they do not covary at all, and r = 0. Then, anything 
between 0 and !1 is some degree of overlap. 

Now, as I noted above, rather than go through the math of the raw score formula for the 
correlation, let us use a mathematically equivalent formula that arrives at the same answer 
as the raw score formula, but uses fewer steps (we did this sort of thing with the standard 
deviations). It does not matter which formula we use, as we will arrive at the same answer, 
but this simplified formula makes it easier to arrive at the answer. We will call this the 
“computational formula for the correlation.”

Take a careful look at the formula’s elements, and notice that we are familiar with nearly 
everything in it already. We will start with the numerator:

N, when referring to a correlation, is the total number of paired observations of the 
variables included in the equation. That is, it represents how many observations of variable 
x that are also paired with an observation of the variable y.

As we can see, N is right next to Rxiyi. Because capital sigma means to add up whatever 
is just to the right of it, we can first do the stuff next to it. The xi and yi right next to each 
other indicates that we multiply them together. What this really means is to multiply each 
value (hence the “i” subscript) of the x variable with its paired y value. Once we have multi-
plied each x with its paired y, the sigma tells us to add up those products.* Then, because the 
N is right next to sigma, that means that we multiply that sum of the products by the total 
number of pairings there were. That completes NRxiyi. 

Still in the numerator is (Rxi)(Ryi). Notice the parentheses. Those tell us that we need 
to add up all of the values of x we observed in the dataset (Rxi), and then also add up all of 
the values of y we observed in the dataset (Ryi). Then, because these two things are right 
next to each other, we multiply one sum by the other sum. We then subtract this piece from 
what we calculated in the NRxiy part. That concludes the calculation of the numerator, but 
we will practice it with real numbers in a moment. 

*	 Even though the order of operations says that addition should come after multiplication, the sigma implies 
that there are parentheses around itself. If the sigma were before the N, then the multiplication would come 
before the addition.
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Now, for the denominator. Notice that the left side of the denominator refers to all of 
the x values, whereas the right side of the denominator refers to all of the y values. It is the 
same steps, just first with the x values, then the y values. 

Let us focus on the parentheses first. Again, the equation asks for Rxi on the left side 
of the denominator and Ryi on the right side. These are the same values as we used in the 
numerator, just before we multiplied them together. They are just the sums of the x values 
or y values, respectively. In either case, we are asked to square the sum of the values of the 
x variable on the left side: (Rxi)

2. We then do the same with the values of the y variable on 
the right side of the equation: (Ryi)

2. 
We will subtract those portions from the NRxi

2 or NRyi
2. As we see, there are no paren-

theses, so we do the exponents first. That means we square each value of x we observed 
and square each value of y we observed. We then add up all the squared xs on the left, and 
multiply them by N, the total number of paired observations. Do the same with the ys on 
the other side of the equation. 

Do not forget to subtract the squared sums from the sums of squares, then multiply 
the results together, and then take the square root. That will give us the denominator. Let 
us try this out with some real numbers so that we can put it all together. 

Here is a scenario: 
Baxter likes to go fishing on the weekends, but he is not sure which bait is most effective. 

He decides to test it out. Each weekend, he goes fishing at the same place from exactly 6:00 
p.m. to exactly 8:00 p.m. Each weekend, he tries a new kind of bait and records the price 
of the bait. He then records how many fish he caught on that same night using that bait. 

Here are his data after 12 weekends:

  Table 7-3  �Baxter Went Fishing for 12 Weekends and Kept Track of His 
Bait Costs and How Many Fish He Caught on Those Weekends

Weekend Bait Cost in $ (x) Fish Caught (y)
1 7.23 3

2 3.45 5

3 8.12 4

4 2.20 6

5 6.50 1

6 6.43 0

7 9.20 2

8 4.90 4

9 2.70 2

10 3.25 6

11 7.75 3

12 5.10 2

Notice here that each observation of the x variable must be matched with an observation 
of the y variable. In this case, they are matched according to the corresponding weekend 
on which both occurred. Notice also that both variables are continuous and have at least 
interval properties. Again, that is necessary for a standard correlation.
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The correlation equation asks us to do several things with these data, so to keep it all 
organized, we will just add some sections to our table. One of the first and simplest things 
we can do is sum up the number of paired observations. Then we will sum up the total of our 
x values and then the total of our y values, so let us add a row at the bottom for those totals 
(I have color-coded these new elements just so it is easier to keep track of them):

  Table 7-4  Baxter’s Data With a Row for the Totals

Weekend Bait Cost in $ (x) Fish Caught (y)
1 7.23 3

2 3.45 5

3 8.12 4

4 2.20 6

5 6.50 1

6 6.43 0

7 9.20 2

8 4.90 4

9 2.70 2

10 3.25 6

11 7.75 3

12 5.10 2

R 12 66.83 38

No sweat. Now we have N = 12, Rxi = 66.83, and Ryi = 38. In other words, Baxter went 
fishing for 12 weekends and recorded data on both variables for each of those 12 weekends, 
giving us a total of 12 paired observations (N). He spent a total of $66.83 on bait (whoa, 
must be nice to have that kind of cheddar lying around), and he caught a total of 38 fish in 
that time (imagine the smell!). 

We can plop those values right into our correlation equation so far:

That information already fills out big portions of the equation! We still need to find 
the sum of squares for each variable (Rxi

2 and Ryi
2) as well as the summed products of the 

paired values (Rxiyi). Let us add some new columns for those steps:



		  Correlation	 99

  Table 7-5  �Baxter’s Data With Columns Added for the Squared Values 
and the Products of x and y

Weekend Bait Cost in $ (x) x2 Fish Caught (y) y2 xy
1 7.23 52.27 3 9 21.69

2 3.45 11.90 5 25 17.25

3 8.12 65.93 4 16 32.48

4 2.20 4.84 6 36 13.20

5 6.50 42.25 1 1 6.50

6 6.43 41.34 0 0 0.00

7 9.20 84.64 2 4 18.40

8 4.90 24.01 4 16 19.60

9 2.70 7.29 2 4 5.40

10 3.25 10.56 6 36 19.50

11 7.75 60.06 3 9 23.25

12 5.10 26.01 2 4 10.20

R 12 66.83 431.12 38 160 187.47

Hang on just a moment here. Look back at the total of the squared columns. Look first 
at the total of the squared x values (xi

2). It is 431.12. Some students may be tempted to just 
square the 66.83 value we obtained after summing them, but that does not equal 431.12. 
66.832 = 4,466.249, so do not try to take that wrong shortcut. This is the whole reason 
why we have to square each value first, and then sum the squares in that separate column. 
Obtaining those separate values is what allows us to skip the steps in the raw score equation. 

We have the rest of the values that we need to put into our equation:

From this point, all we have to do is complete the equation step-by-step, following 
the rules of the order of operations. That means we will first do anything in parentheses. 
However, the equation does not actually have anything needing to be done within parenthe-
ses. The parentheses now are just there to keep numbers separated that need to be multiplied. 
In that case, we can first begin with the exponents (from now on, the color coding does not 
correspond to the table, but is just to keep track of items we are computing in each step):



100	 Chapter 7  Coherent Introductory Statistics for the Social Sciences

Next, we can move onto the multiplication:

Now we have steps within parentheses (or brackets, in this case) that we can complete, 
so that is what we will do next. Of course, in the numerator, we can also complete that 
subtraction without interrupting our order:

Pause here for just a second. One quick clue about whether we made a mistake in our 
calculations is these numbers in the denominator (707.19 and 476). Both of these numbers 
absolutely must be positive. It is impossible to get a negative number for either of these, so if 
we find a negative number in the denominator at this point, we made a mistake somewhere. 
One hint at this fact is that if one of them is negative, then we would be asked to take the 
square root of a negative number, which, if we attempt, causes the universe to implode (or 
something like that—I have never actually tried it).

Math Check
The denominator of the correlation equation absolutely must be positive. 
If it is negative, there must be a miscalculation.

However, just because both numbers there are positive, that is not an assurance that 
our math is correct. Many mistakes can still result in positive numbers there. Still, we can 
use this quick math check to help ensure that we are on track. 

Another thing to notice in this result is that the numerator is a negative number. That 
is totally possible because we can have r values that are anywhere between -1 and +1. We 
can tell already at this point that whatever our r value is, it is negative. That is half of the 
battle in interpreting a correlation, but we still need to know the strength of the correlation…

In any case, the next step is of course to multiply these two numbers in the denominator:

We can now take the square root of the denominator. Do not forget this step—it is a 
very common mistake for students to just leave out the square root operator as they write 
out the equation over and over again, but this will ultimately lead to the wrong answer, so 
do not skip this step!
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Let us pause now and think again about what we have so far. In the numerator, we have 
-289.9. That number represents the covariance between our two variables. In other words, 
that is about how much the cost of the bait and the number of fish caught change together. 
The number so far does not really mean anything that is easy to interpret by itself, because it 
is not in dollars or in number of fish, but some weird hybrid of both of those. Still, we can see 
something interesting already about how different the numerator is from the denominator. 

The denominator is 580.25. That number represents just how much variation there 
was in either variable by themselves. Again, the number is not easily interpretable because 
it is not in dollars or number of fish caught, but what is noteworthy is just how large the 
numerator is in relation to the denominator. It is very close to half of the size, which means 
that there was a pretty good amount of covariance between these variables. In fact, we will 
continue the interpretation after we have finished the equation’s final step:

We now have our correlation coefficient, r = -.50. Think back to what we covered about r on 
the previous pages. First, it cannot be lower than -1 or above +1. Ours is within those limits, so 
that is a good sign that we did not miscalculate. Now, we need to think about the two things that 
the correlation coefficient communicates: (a) the direction and (b) the strength of the relationship. 

The direction of the relationship is clear to see from the minus sign preceding the “.50.” 
Because of that minus sign, we can state that this is a negative correlation. In other words, as one 
of our variables increased in its value, the other one tended to decline in its value, on average. 

The strength of the relationship has to do with the value of the number. This one is “.50,” 
and so we can refer back to Table 7–2 to see that it just barely falls within the range of a “strong” 
relationship. That basically means that these two variables change together relatively well. 

All together, we can say that there is a strong, negative correlation between the amount 
of money the bait cost and the number of fish Baxter caught. To be clear, that means that as 
Baxter spent more money on bait, he caught fewer fish with that bait. That is, as one of the 
variables increased, the other decreased (the definition of a negative correlation). 

Perhaps a scatterplot would help to illustrate the relationship:

Figure 7-8  �Scatterplot of Baxter’s Data, Including the 
Trendline Showing the Negative Relationship

Again, each green dot in the scatterplot represents one of the pairings of bait with fish 
caught. We can think of each green dot as the day that Baxter bought bait and also went 
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fishing (assuming he did these things on the same day). The blue line shows the average 
trend of the data. It is a line that is as close to each of the green dots as possible (we will see 
how to make one in the next chapter). This line is sloping from the upper-left of the graph 
towards the lower-right, which is another definition of a negative relationship. 

To drive home the earlier points about correlation not equating causation, Baxter might 
make the mistake of saying to himself, “Well tarnation! Looks like the more I spent on the ding 
dang bait, the fewer fish I caught! That means that this expensive bait ain’t worth spit!” Surely, 
Baxter may be correct—maybe the more expensive bait is actually the reason (and the only 
reason) that he caught fewer fish, on average, as he spent more on the bait. However, it could 
also be that he happened to buy expensive bait on days when there were more anglers around 
catching the fish, and so there were simply fewer fish to be caught. It could also be that the fish 
were more or less hungry as the season changed (12 weeks is a long time). Baxter did not take into 
account the time of day that he caught the fish—maybe one type of bait was better for catching 
fish in the morning versus the evening, for example. Baxter did not tell us whether he used the 
same fishing line, weights, rod, and so on with each type of bait. Maybe catching more fish from 
the week before led Baxter to subconsciously feel more comfortable spending extra money on 
bait the next week (so that he assumed the wrong pairing of the variables). And of course, there 
are dozens of other legitimate criticisms of the way Baxter went about answering his question. 
Again, we do not assume a causal relationship if a correlation is the only information we have.

In the next chapter, we will build more upon the information we gleaned from the corre-
lation and put it to more practical use. In the meantime, let us make sure we understand 
the concepts of a correlation by answering the questions below. Additionally, try out the 
practice problems in Appendix F.

Practice
Here are a few questions we can answer to see if we can correctly interpret a correlation coefficient:

Task — Describe these correlations in terms of both strength and direction.
1.	 r = .78*

2.	 r = -.12†

3.	 r = -.92‡

4.	 r = .38§

5.	 r = 3.65¶

Task — Explain whether the following are positive or negative correlations, or if it is impossible to tell.
6.	 Fritz is a dachshund whose barking tends to increase when his energy level decreases. What 

is the correlation between Fritz’s barking and energy level?**

7.	 As Suzanne spends less money on movies in a given month, her happiness also decreases. 
What is the correlation between Suzanne’s spending on movies and happiness?††

8.	 Dr. Blasenshirm discovers that injecting mice with a hormone that affects their ability to smell 
changes their mating behavior.‡‡

*	 Strong, positive correlation.
†	 Negative correlation that is so weak (close to zero), that we could say there is no correlation at all.
‡	 Very strong (nearly perfect) negative correlation.
§	 Weak, positive correlation.
¶	 This one is not a possible correlation, because it falls outside the range of +1 or -1. Looks like somebody miscalculated…
**	 This is a negative correlation because as one of the variables increases, the other decreases on average.
††	 This is positive correlation because the variables decrease (and increase) together, on average.
‡‡	 This one is impossible to tell, because the statement gives no indication about the direction of the change.
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Summary
	◼ Correlation is a statistical method that summarizes how one 

continuous variable tends to change with the increase or decrease of 
another continuous variable. 

	◼ When reporting a correlation, we must report not only the strength 
of the relationship (from 0 to 1), but also the direction of that 
relationship (- or +). 

	◼ Correlation never implies a causal relationship, because there are 
many circumstances that may produce a correlation when two 
variables are not actually related. Interpret correlation with caution. 






